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Abstract — Comparison is made between an earlier analysis by the author and more recent theoretical
investigations of mixed convection in an isothermal horizontal tube. It is again substantiated that the
primary parameter for determining the bulk-temperature rise under buoyancy-dominated conditions is
given by the fourth root of the Rayleigh number divided by the Graetz number. The theory is shown to
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water. Although derived for a large-Prandtl-number fluid, it is found that the theory can equally well describe
available data in air.

NOMENCLATURE
a, pipe radius;

C,,  specific heat;

g, gravity ;

Gr,  Grashof number, gB|AT|a®/v?;
k, thermal conductivity;

L, pipe length;

P, pressure;

Pr,  Prandtl number, uC,/k;

4., heat flux at wall;

r, radial coordinate;

Re, Reynolds number, Wa/v;

T,  average of bulk temperatures at inlet and
outlet;

Ty, bulk temperature;

T,  core temperature relative to T, see (2.11);

To, uniform temperature at inlet;

T,, uniform wall temperature;

u, radial velocity component;

v, azimuthal velocity component;

Ve, =(/a) (Gr/Pr)'?,;

Vs =(v/a) (z/aRe) (Gr/Pr*P);

w, axial velocity component ;

W,  average axial velocity;

z, axial coordinate.

Greek symbols
a, thermal diffusivity;

B, coefficient of volumetric thermal expansion;
4, =,/(Az);

S5, =a/(GrPr)'*;

AT; = Tw - TO;

AT,, bulk temperature rise;
N = (z/aRe)*(Gr/Pr1?y;

L, =(a — r)/ds;

2 =v/W, “viscous length”;
i dynamic viscosity;

v, kinematic viscosity;

£, =zf(aRePr);

o, fluid density;

g, =(GrPr)'*¢;

P, azimuthal coordinate measured from verti-
caily downwards (upwards) in case of heated
{cooled) wall;

2 =(a ~ r)/é;

v, streamfunction ;

W, see following (2.7).

Subscripts
a, evaluated at T,;
B, buoyancy-induced ;
<, core;
exp, experimental;

F, forced-flow induced;
L evaluated at z = L;
w, evaluated at wall.

1. INTRODUCTION

ALTHOUGH it appears to have been the first theoretical
analysis of mixed convection in an isothermal horizon-
tal tube, and although it correlated much of the
available data better than the best empirical cor-
relations, [1] seems to have received a rather “mixed”
response, at best. For example, (i) in their finite-
difference investigation of this problem, Ou and Cheng
[2] note the similarity between their own predictions
and those in [1] but indicate that a direct comparison
cannot be made since the entrance flow conditions are
different in the two cases (in fact, the main resultin [1]
is independent of the entrance flow condition, and, as
will be shown in Section 2, when the results in [2] are
rescaled in terms of the variables in [1], the various
curves in [2] collapse into a single curve which
essentially coincides with the theoretical curve of [1]);
(ii) in his detailed perturbation analysis of the entrance
flow region for this problem, Yao [3] summarily
dismisses the analysis in [ 1] on the basis that it neglects
the interaction between the core flow and the
boundary-layer flow (in fact, the analysis for the “near
region” in [1] was concerned with following the effect
of buoyancy upon the heat transfer and not upon the
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flow structure of the core ; nevertheless, Section 3 now
indicates how the analysis in [1] could be extended to
include the leading effect of buoyancy upon the core
flow, thus serving as a large-Prandtl-number asymp-
tote for the results in [3]); (ili) in their summary
discussion of this problem area, admittedly with no
claim of being comprehensive, Shah and London [4]
cite only the empirical correlation developed in [5]
(even though the theoretical result in [1] correlates the
rather extensive data in [5-7] better than any of the
empirical correlations developed in any of these
investigations).

The purpose of the present paper, then, is to
elucidate and further substantiate the theory de-
veloped in [1]. This is done on the one hand by
showing in Sections 2 and 3 how [1] can be related to
the results in [2] and [3], respectively. On the other
hand, it is shown in Section 4 that a composite result,
based upon the theory of [1] and the rescaled resuits
from [2], correlates the data in [5-7] with an RMS
deviation of 8%, for water and 15% for ethyl alcohol
and 80/20 glycerol water. In addition, it is found that
although the theory has been derived for a large-
Prandtl-number fluid, it can equally well describe the
heat-transfer results in air reported in [8].

2. COMPARISON OF THE RESULTS OF OU AND
CHENG [2] WITH [1]

Although the numerical simulation by Ou and
Cheng [2] is for a fully-developed inlet velocity
whereas the near-region analysis in [ 1] is for a uniform
inlet velocity, the major results in [1], namely the
expansions for the intermediate and far-intermediate
regions, can still be applied when the inlet flow is fully
developed. In this case, provided Pr > 0(1) and GrPr
> 0(1), the bulk-temperature rise in the region

O{(GrPr)™3*} < £ < O{(GrPr)™'"*}

is given by the results in Section 2(d) of [1], namely

(2.1)

AT, = AT Z C,o" (2.2)
n=1
where, forn = 1-6,
C, = 0.87052, —0.47363, 0.20615,
—0.07851, 0.02734, —0.00892 (2.3)

and ¢ (or “c;”, in the notation of [1]) is defined as:

z <Gr )”4 = (GrPr)'4¢

7= aRe\ PP @4

which, in effect, is the fourth root of the Rayleigh
number divided by the Graetz number.

That is, according to the theory developed in [ 1], o is
the primary variable for determining the bulk-
temperature rise for mixed convection in an isother-
mally heated or cooled horizontal tube. Accordingly,
in making comparison with the finite-difference calcu-
lations of Ou and Cheng [2], it is appropriate to
rescale their results in terms of 6. In this regard, it is
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noted that Fig. 7 of [2] presents results for (AT --
AT,)/AT vs £/4 (in present notation) for various values
of GrPr, namely 5 x 10 10% 5 x 10% 10°,5 x 10°
and 10° A replotting of various points in terms of
AT, /AT vs o gives the results in Fig. 1. That is, the
results for different Gr Pr collapse into one curve which
is well represented by the results of [ 1]. In particular,
the solid curve in Fig. 1 corresponds to the first six
terms in (2.2) whereas the dashed curve corresponds to
an empirical extrapolation, namely
AT,

— = 0.543 + 0.315(6 —
AT + (o — 1)

—0.132(c — 1)> + 0.028(s — 1)* (2.5

which was obtained in [1] for | < ¢ < 2.5 based upon
comparison with existing data.

The agreement indicated in Fig. 1 between the
results in [1] and [2] is rather remarkable, typicaily
being within a few per cent. Further, it is noted that the
poorer agreement for the smaller GrPr results at the
smaller values of o is due to the forced-convective effect
of the near region where & is still the controlling
parameter. On the other hand, although the forced
convection will reappear as the dominant heat-transfer
mechanism as AT, approaches AT, with ¢ again
becoming the pertinent variable, the scaled results
from [2] in Fig. 1 indicate that ¢ is still the controlling
parameter when AT, is as large as ~98%, of AT.

At this point, it is suggested that the more casual
reader skip to Section 4 since the remainder of this
section and the following section are concerned with
more detailed comparisons between [1] and [2] and
between [1] and [3], respectively. In particular, in
making comparison between [1] and [2], it should be
noted that the theoretical result (2.2), from [ 1], is based
upon a model in which the azimuthal velocity com-
ponent is of order

{2.6)

in both the thermal boundary layer, which is of order
a/(GrPr)*** in thickness, and in the core. Further, it is
assumed that the core is not thermally stratified, i.e. as
the temperature rise in the core becomes of O(AT), the
temperature variation across the core remains of order
AT/(GrPr)'/4,

For comparison, it is noted that the results at GrPr
= 10° in Fig. 6(a) of [2] indicate that the angular
velocity, non-dimensionalized with respect to o/a, is as
large as 100 to 200 in both the core and thermal
boundary layer in the region 5 x 107% < /4 £ 3 x
107?* (“z” in [2] corresponding to &/4, in present
notation). This is to be compared with Vz = (v/a)
(Gr/Pr)'® = (a/a)(Gr Pr)''? ~ 300 /a, indicating that
Vy is indeed the characteristic speed in this domain.
On the other hand, the corresponding results for the
temperature field in Fig. 3 of [2] indicate that the core
does become thermally stratified but that this does not
become significant until £/4 ~ 10~ 2, where, according
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FiG. 1. Rescaled results from Fig. 7of [2]for GP = 5 x 10° (+),10*(O). 5 x 10*(A), 105{0]),5 x 10°(V)
and 10°® (). Solid curve corresponds to first six terms in (2.2); dashed curve given by (2.5).

to Fig. 6(a), the secondary velocity in the core has
already diminished to ~40a/a. In this regard, it is
noted that it is clear on physical grounds that thermal
stratification cannot become significant until AT, =
O(AT); further, by means of a global energy balance
with g,, based upon k AT(GrPr)!*/a, it follows that
AT, = O{AT) where ¢ is of order (GrPr) 4 [ie.¢ =
O(1)] which, for Gr Pr = 10°, gives &/4 ~.1072,

The picture which therefore arises from the resultsin
[2] is that, in agreement with the model in [1], the
buoyancy-dominated structure is first characterized
by a non-stratified core with angular velocities of
O(V3) in both the core and thermal boundary layer.
However, unlike the model in [1], the results in [2]
indicate the development of significant thermal strati-
fication in the core when AT, becomes of O(AT).
Accordingly, one would expect good agreement be-
tween [1] and [2] when AT, /AT is small. However, the
fact that the non-stratified theory of [1] still describes
the results in [2] when AT,/AT is as large as 54%, as
shown in Fig. 1, indicates that stratification does not
have such a drastic effect upon the global heat transfer.
In fact, this point was already surmised in [1] where it
was noted that, for the uniform-heat-flux case, the
stratified solution of Siegwarth et al. [9] for the
buoyancy-dominated, fully-developed flow region
gives a circumferentially averaged Nusselt number
which differs by only 109, from the corresponding non-
stratified solution.

As a further illustration of the relationship between
{17 and [2], it is noted that the results in [1] can be
readily extended to a determination of the secondary
velocity in the viscous core, corresponding to the
situation in [2] prior to significant stratification. As
noted in [1], the neglect of inertial effects in the core
requires that Gr < O(Pr). In this case, vg and ugin the

core are related to a streamfunction, g, which is
biharmonic and satisfies evident symmetry conditions
along ¢ = 0, n together with the conditions
2 .
Yp=0, — é@ = Vzo'?sin' ¢ f(w0) atr=a
¥
@n

where @ = [§sin'? ¢ dt (corresponding to “¢” in [1])
and f(n) corresponds to the similarity solution for the
streamfunction in the inner layer, such that f’(c0) =
1.02136, as given in (2.24) of [1]. That is, the in-
homogeneous boundary condition in (2.7) corres-
ponds to the non-zero asymptotic value of vy at the
edge of the inner layer.
A series solution for ¥, can be expressed as

o r\» r2 i
Yg=Vga Zx c, (E) (1 - a-z)sm ng (2.8)

where
A J o' 2sin' g sinngdp.  (29)
T [

A resulting plot for ¥rz/(V ga), based upon the first ten
terms in (2.8), is shown in Fig. 2. In particular, these
results indicate that

Gr

v 12
(lpB)max ad 0,25 VBa — 0‘25 ..(._.__)
a\ Pr

x a = 0.25a(GrPr)}’?  (2.10)

where a is the thermal diffusivity. For comparison, it is
noted that the results in Figs. 2 and 3 of Ou and Cheng
[2] indicate a Y, of = 45« and 70 «, respectively, at
GrPr = 5 x 10* and 105 whereas (2.10) gives



F1G. 2. Solution for ¥ 5/(V ga) in viscous core as given by first
ten terms in (2.8).

corresponding values of 56« and 79 «, in reasonable
agreement. That is, as discussed above, the calcu-
lations in [2] indicate that the maximum secondary
flow in the core occurs prior to significant stratifi-
cation, thus the good correlation of ,,,, with the
present non-stratified theory. Further, in comparing
the contours in Fig. 2 with these in Figs. 2 and 3 of [2],
it should be noted that the plots in [2] are shown for
the cooled-wall case whereas that in Fig. 2 of the
current work is for the heated-wall case. Hence, the
results in [2] indicate that, for the heated-wall case, the
eye of the vortex will lie in the upper quadrant prior to
stratification, in agreement with Fig. 2, but then
become weaker and move into the lower quadrant as
the thermal stratification becomes substantial.
Finally, it should be noted that the results in [2] at
GrPr = 10° could be interpreted as indicating a rather
limited overlap region in which there is O(AT) stratifi-
cation in part of the core together with O(V g} secon-
dary velocities [e.g. theregion 107° < {/4 £ 2 x 1073
where the results indicate significant stratification in
the upper (lower) part of core for the heated (cooled)
wall case]; it would then follow that the interaction
between this secondary velocity and core temperature
would give rise to a thermal-convection effect of order
Vs AT/a = (vAT/a*) (Gr/Pr)'"*. For comparison,
with gq,, being of order kAT(GrPr)'*/a, it follows that
wdT,/dz is on the order of (v AT/a%) (Gri/*/Pr3™),
which is seen to be smaller than the above convection
term by order (GrPr)~'/. Indeed, this is the very
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reason that, for the fully-developed buoyancy-
dominated region in the uniform-heat-flux case, one
cannot have O(AT) stratification together with O(V )
secondary velocities, as was shown by Siegwarth ez al.
{9]. In the present case, however, since the stratifi-
cation is developing with z, we have that the tempera-
ture distribution in the core is of the form

Tir,8,2) = Ty{z) + T.ir.0,2) {2113

Hence, by requiring that wéT,/éz balance the con-
vection due to the secondary flow, it follows that
8T 0z should be on the order of (AT/(aPrRe))
(GrPr)' 2, In particular, from Fig, 5 of [2] it is noted
that,e.g.atr/a = 0.6 and ¢ = n,thechangein T, + T.
between &/4 = 107 and 2 x 1073 is =~027AT
whereas, from Fig. 7 of [ 2], the corresponding change
in T, is seen to be ~0.03 AT ; hence, for this /a and ¢,
the average value of 0T,/Cz between the above two
values of ¢ is approximately

_ 024AT
&z ~ (107%)(4aPrRe)

where the 60 is to be compared with (10°)'% =~ 300,
indicating marginal agreement. In fact, the thermal
convection due to the secondary flow has been over-
estimated in the above since the secondary velocity at
E/4 =2 x 107 % and r/a = 06, ¢ = n is only a small
fraction of Vg, as can be seen from the streamline
pattern in Fig. 3 of [2] together with the above
discussion of Fig. 6(a).

Nevertheless, the above indicates at least a tendency
for 8T,/0z to be on the order of (AT/(aPrRe)) (GrPry'™
In turn, noting that the buoyancy arising from T, in the
core can only be balanced hydrostatically, it follows
that the associated pressure, p,, will be on the order of
pgBaT.. Hence, with the axial gradient of p, being
balanced by viscous diffusion of w, it follows that the
corresponding induced axial velocity component will
be such that

AT

aPrRe

0T,  pygPaAT ,
L e G P 1‘2H
pgpa {z aPrRe (GrPr)

ie. Aw, will be on the order of W{(GrPr)>?/(RePr),
where this effect should be most evident in the top
(bottom) of the core in the case of a heated (cooled)
wall. Further, it is noted that this pressure gradient
would tend to be adverse in this region of the core. {Tt
should also be pointed out that the above result for
Aw, is the same as obtained by Siegwarth et al. [9] for
the uniform-heat-flux case except for an additional
(GrPr)'* in the numerator due to 67,/0z being order
(GrPr)'/* larger than dT,/dz.] Accordingly, it seems
that the simplification in [2] of neglecting any change
in w due to buoyancy would require that
(GrPry*’/{RePr)? be small. However, at least as re-
gards heat-transfer predictions, it appears that this
constraint is unnecessarily restrictive since the exper-
imental data cited in Section 4, which is well described
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by the theory of [1] and [2], corresponds to values of
the above parameter as large as 4000. Even in terms of
the less restrictive criterion of [9], it is noted that the
data corresponds to values of (GrPr)**/(RePr)® as
large as 125.

3. RELATING THE WORK OF YAO [3] TO [1]

Both [1] and [3] employ asymptotic expansion
techniques to analyze mixed convection in an isother-
mally heated or cooled horizontal pipe. In the former
investigation, the expansion is for large Prandtl num-
ber whereas the latter is for Pr of O(1); in both
instances, the velocity is assumed to be uniform at the
entry. Accordingly, the leading-order forced-flow ve-
locity boundary layer is given in both cases by the well-
known Blasius solution for flow over a flat plate, witha
boundary-layer thickness of order 6 = /(Az) where 2
= v/W. In [1], due to the large-Prandtl-number
assumption, the forced-flow thermal boundary layer is
of order 8/Pr'? in thickness, being imbedded within
the Blasius boundary layer and being described by a
suitably scaled Leveque solution. This forced-flow
temperature distribution results in a buoyancy term
which induces an angular velocity of O(¥5), where

P o= v z Gr

" a (aRe)P—;m'

In turn, this buoyancy-induced flow (more specifically,
the radial component thereof) convects the forced-flow
temperature field and thus gives rise to a buoyancy-
induced temperature which, in like manner, induces
further flow. As shown in [1], this expansion for the
buoyancy-induced flow and temperature proceeds in
powers of ¢,, where

. = z \* Gr
'~ \aRe) PrB”
In [3], on the other hand, due to Pr = O(1), the

thermal boundary layer is of O(8) in thickness and the
associated leading-order buoyancy-induced angular

velocity is of order
v z
-{—=)or,
a(aRe) "

which is seen to agree with Vif Pris O(1). Rather than
proceeding in powers of ¢;, as in [ 1], the interestin [3]
is with determining the resulting buoyancy-induced
flow in the core. If this had been done in [1], it would
have required first determining the behavior of the
buoyancy-induced flow in the velocity boundary layer,
as is shown below.

In particular, in the notation of Section 2(a) in [1],
we would have

dvg, dvg, og,
Mo Ty T e 3D
and
Ovg,  Oup,
il (3.2)
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subject to the conditions that
up, =0, vp, =20401 Vgsing at x=0

vg, ~0 as y— (3.3)

where y = (¢ — #)/0 and the inhomogeneous condition
in {3.3) arises from matching the asymptotic behavior
of vg, at the outer edge of the thermal boundary layer,
as given in (2.8) of [1]. However, following Yao [3], the
sitnation for ( )p, in the velocity boundary layer is
more complicated due to the inertial term up, dwy/0r
which gives rise to a wp, of O(Vyz/a) and which,
therefore, contributes a term to (3.2). That is, with wy,
being governed by

aWF
B, oz

aWp

ow ow
Up, 5 TW e =

+u Fwa,
=y
oz P or or?

(3.4)

+ wp

subject to the conditions

wg, =0 at y=0, ws, ~0 as y— o (3.5)

and dwg,/0z being added to (3.2), it follows that an
appropriate representation is given by

vg, = V3 ®,sin¢ (3.6)

~ O
ug, = Vs;((px +3®, — §x®)cos ¢ 3.7

wp, = 17,,2- ; cos ¢ (3.8)

with @, (y) being governed by
Oy +iFO] — F®, =0 (39)
®,(0) =0 = ®i(c0), @,(0)=2.0401 ’
and ®,(x) by

Oy + LF® — 2F'®) + 3F'®, = — F'®,
D,(0) = 0 = }(0) = Py(o0)| (3.10)

where F(x) corresponds to the well-known Blasius
solution, governed by

F" +4iFF" =0; F(0)=0= F(0),

F(o)=1. (3.11)
‘ Numerical solution of the above results in
®7(0) = —1.1066, ®,(c0) =24507 (3.12)
and
©5(0) = 0.5855, @, (0) = 1.8249. (3.13)

In particular, the non-zero value of ®4(0) indicates that
wg, will be of O(V 3Pr~'"z/a) in the thermal boundary
layer, thus contributing a term of O(¥3Pr~1/3/a) to the
continuity equation and hence justifying its neglect in
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determining vy, and ug, in the inner layer, as was done
in [1]. On the other hand, as y — «

»

~ 0 ) o

ugy ~ CyVg-cos¢ (3.14)
a
where C; = 24507 + 3 (1.8249) = 7.0130. For
comparison, it is noted that, in the present termi-
nology, Yao obtains
-9
ug, ~ 232B,(Pr2*Vg)—cos ¢ as y—x (3.15)
a

with 8, = 0.3158 for Pr = 10, thus giving a value for
23/2/3 Pr?® of 4.146. This poor agreement with the
above value for C, can, in fact, be attributed to the
presence of higher-order terms in the large-Prandtl-
number expansion. In particular, by extending the
analysis to these higher-order terms, it can be shown
that

C, =70130 — 72220 Pr~13 + O(Pr ") (3.16)

such that, as applied to Pr = 10, the first two terms in
(3.16) result in a value of 3.661, which is seen to agree
within about 109 of the value of 4.146 from Yao, as
would be expected from the omitted O(Pr 1) term in
(3.16).

Accordingly, for the large-Pr limit, one can make
direct use of the core results obtained by Yao [3]. In
the present notation, this becomes (for large z/a):

. 0
upg, = ClVB(fcosd) (3.17)
a
o
vg, = —C{Vy-sin¢ (3.18)
a
s 0T
wp, =3C;Vy- -cos¢ (3.19)
za
_or
ps, = —3C pWVg— —cos ¢ (3.20)
za

such that the buoyancy-induced velocity in the r-—¢
plane is in the vertical direction (downwards in the
heated-wall case, upwards in the cooled-wall case) and
of magnitude C,Vyd/a.

In summary, it is noted that the “near region”
expansion in [ 1] and the expansion in [3] require that
both ¢, and é/a be small. That is, the expansions break
down when either ¢, becomes O(1), ie. z/aRe =
O(Pr'/*/Gr''?), indicating that the natural convection
has become a leading-order heat-transfer effect, or d/a
= O(1), ie. z/aRe = O(1), indicating that the viscous
boundary layer has merged along the centerline.
Accordingly, which of these conditions is met first
depends upon whether Gr > O(Pr'®) or Gr <
O(Pr'3). In the former case, the thermal boundary
layer is buoyancy dominated in the region z/aRe >
O(Pr'’®/Gr'’?) with its thickness being of order
a/(GrPr)*'* and the associated angular velocity being
of order {v/a) (Gr/Pr)}!'2. On the other hand, if Gr <
O(Pr'”®) then the thermal boundary layer remains

forced-flow dominated in the region z/aRe > 0(1) but
is now imbedded within Poiseuille flow, in leading
approximation, with the thickness of the thermal layer
being of order a(z/aRePr)!?. In this case, the natural
convection will remain a smaller-order effect until the
region where z/(aRe) = O(Pr'**/Gr**). However, if
this region corresponds to z/(aRe) > O(Pr),i.e.if Gr <

O(Pr~"), then the forced-flow-dominated temperature
field will have alreadv become fully develoned (T -

have already become fully developed (T ~
T.). indicating that natural convection remains a
smaller-order effect throughout if GrPr < O(1), as
might be expected.

In particular, then, for the case Gr < O(Pr'’®), the
results in (3.17) and (3.18) imply that, in the region

z/(aRe) = 0(1), the secondary velocities in the (viscous)
core will be of the same order as in the thermal layer.
By further exirapolation, the resuits of Yao suggest
that the eventual buoyancy-dominated structure will
also be characterized by significant secondary velo-
cities in the core. Such a result is seen to be compatible
with the numerical results of Ou and Cheng [2],
preceding significant thermal stratification, as dis-
cussed in the previous section.

Finally, it should be noted that the analysis of Yao
[3] represents the first attempt, for the present con-
figuration, at predicting the effects of natural con-
vection upon the axial pressure gradient, an issue
which is not addressed by either [1] or [2]. Although
no simple task, it appears that this problem will be
most readily resolved by extending the finite-difference
calculation of [2] to include the axial force balance. In
this regard, it is noted that the recent work by
Abdelmeguid and Spalding [10] indicates that such a
numerical capability is at hand ; however, even in their
calculation, which is for the developing turbulent
mixed convection in a uniform-heat-flux pipe (hori-
zontal, vertical or inclined), it is found necessary to
neglect the radial and ¢ dependence of the axial
pressure gradient.

4. COMPARISON WITH EXPERIMENTAL RESULTS

Shown in Fig. 3 is a comparison between the
theoretical results from [ 1] and [2] and the experimen-
tal results of Oliver [6], Brown and Thomas [5] and
Depew and August [7]. In particular, the solid and
dashed curves in Fig. 3 are the same as in Fig. 1, being
based upon equations (2.2) and (2.5), respectively; on
the other hand, the long-short curve in Fig. 3 cor-
responds to the following least-square fitting of the
results from [2], as shown in Fig. 1 for ¢ > 0.7:

AATT—b ’go D", 0.7<05<60 (4.1}
where
D, = 0.00369, 0.80669, —0.31435,
0.066911, —0.0073590, 0.00032559 (4.2)

for n = 0 — 5. Following the standard Sieder-Tate
empiricism, the data points have been processed by
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FiG. 3. Comparison of theory with data of Otiver [water { A}, ethyl alcohol (I} and 80/20 glycerol water
(%)}, Brown & Thomas [water (-+)] and Depew & August [water (A) and ethyl alcohol ((J}]. Solid curve is
based upon (2.2), dashed curve upon (2.5) and long-short curve upon (4.1). The abscissa and ordinate for data

are, respectively, oy, and (ATW/AT).., (u/tis

evaluating all physical properties at the average bulk
temperature, T, = T, + $AT,, and multiplying the
measured AT,/AT by the factor (i,,/u,)°**. In general,
it is seen that the data compare quite well with the
theory. In fact, relative to a composite result based
upon (2.2)foro < 0.7and upon (4.1} for0.7 < 0 < 6.0,
the RMS deviation of the various data shown in Fig. 3
{excluding the two points beyond 6.0} is as follows: 9%
(M), 157 (W), 157, (W), 7% (+), 87 (A) and 14% (O).

On the basis of the above, it would seem that the
present theory can fairly well describe buoyancy-
dominated convective heat transfer for large-Prandtl-
number fluids in isothermal horizontal tubes. That is,
provided (GrPr}'* and Pr are large, and ¢ lies in the
range shown in Fig. 3, the bulk-temperature rise would
be expected to correlate well with the composite curve
based upon (2.2) and (4.1). In particular, for the
experimental points shown in Fig. 3, (GrPr)!/* ranges
from as low as &7 in the glycerol-water data of [6] to
as high as ~45 in the water results from [5]. Further,
Pr ranges from as low as ~4in [5] to as high as ~500
for the glycerol-water data in [6]. The data include
both the heated-wall ([6]) and cooled-wall ([5-7])
cases and both fully-developed ([6] and [7]) and
uniform ([5]) inlet-velocity conditions.

It is indicated in [1], however, that the oil data of
Kern and Othmer [11] do not correlate well with the
theory. In this case, (GrPr)'** ranged from ~17 to 120
with Pr lying between &35 and 1700. Except for the
data for which (GrPr)!/* < 30, the results in [11] tend
to lie 30-50% below the theory. Although one com-
plicating factor in this case is the possibility of an
unstable flow associated with the larger {GrPr)*#
values (note: Gr is here based upon tube radius)—in

)0.14_

fact, Kern and Othmer noted that their results were
highly susceptible to external disturbances (see p. 526
of [11])—the fact that the present laminar theory
overpredicts the heat-transfer rate seems to militate
against the possibility of turbulence. Another cause of
discrepancy with the theory could be a large value of
(GrPr)*"*/{RePry® which, according to [9] and the
discussion at the end of Section 2 above, might lead to
a significant change in the flow structure due to a
modulation in the axial velocity arising from buoyancy
effects upon the axial pressure gradient. In this regard,
it is noted that the data in [11] include runs for which
the above parameter is as large as 2000 ; however, there
are also runs which exhibit the same significant
deviation from the present theory but for which the
above parameter is much smaller than one. (For
comparison, this parameter gets as large as 125 for the
data shown in Fig. 3.) Accordingly, the discrepancy
with the data in [11] remains unresolved although one
contributing factor may be the severe heating con-
ditions, T,, — T, ranging between 125 and 220°C, with
the associated large variations in the oil viscosity. This
effect will be considered further in a separate
investigation.

In closing, it is interesting to note that although the
present theory has been based upon the assumption of
a large Prandtl number, an analysis of the correspond-
ing experimental data obtained by Jackson et al. {8] in
air indicates that (2.2) and (4.1) seem to correlate the
results in this case also. That is, with a T, of 100°C, a
detailed analysis of the results presented in Fig. 3 of [8]
indicates that T, was =33°C and (GrPr}'”* =~ 28 (in
present notation) with the bulk-temperature measure-
ments lying roughly 10%; below (2.2) and (4.1). A more
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detailed presentation of these and other experimental
results will be given in a future communication.

L
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CONVECTION MIXTE DANS UN TUBE HORIZONTAL ET ISOTHERME: QUELQUES
THEORIES RECENTES

Résumeé — Une comparaison est faite entre une précédente analyse par l'auteur et des études théoriques plus
récentes sur la convection mixte dans un tube isotherme et horizontal. Il est encore dégagé que le paramétre
pour déterminer I'élévation de la température moyenne sous des conditions dominées par les forces
d’Archiméde est donné par la racine quatriéme du nombre de Rayleigh divisé par le nombre de Graetz. La
théorie s"accorde avec les données existantes dans une moyenne quadratique de 8 % pour I'eau, de 159 pour
Palcool éthylique et le mélange 80/20 de glycerol et d’eau. Bien que celd soit obtenu pour un fluide 4 grand
nombre de Prandtl, on montre que la théorie peut aussi bien décrire convenablement les données connues

pour Vair.

GEMISCHTE KONVEKTION IN EINEM ISOTHERMEN HORIZONTALEN ROHR: EINIGE
NEUERE THEORIEN

Zusammenfassung—Es wird ein Vergleich zwischen einer fritheren Analyse des Autors und neueren
theoretischen Untersuchungen der gemischten Konvektion in einem isothermen horizontalen Rohr
durchgefiihrt. Dabei bestatigt sich wieder, daB der wesentliche Parameter zur Bestimmung der Zunahme der
Mitteltemperatur unter von Auftrieb bestimmten Bedingungen durch die vierte Wurzel aus der Raleigh-
Zahl, dividiert durch die Graetz-Zahl, gegeben ist. Es wird gezeigt, daB durch die Theorie vorliegende Daten
mit einer mittleren quadratischen Abweichung von 8 % fiir Wasser und von 15 % fiir Athylalkohol und 80/20
Glyzerin—Wasser-Mischungen wiedergegeben werden. Obwohl die Theorie fiir Fluide mit groBer Prandtl-
Zahl abgeleitet wurde, zeigte sich, daB sie gleichermaBen verfiigbare Daten fiir Luft beschreiben kann.

CMEIIAHHAS KOHBEKLIHKA B I/I30TEPMI/I'~{ECKOFI OPU30OHTAJILHOM TPYEBE.
PAJ HOBLIX TEOPHUHN

Anuorauss — [1posefieHO cpaBHEHME MEXAY METOLOM, paHee MPEUIOKEHHBIM apTopoM, u Oonee
NO3AHHEMH TEOPETHYECKAMH HCCIICJOBAHUAME CMEIIAHHOH KOHBEKUHH B H3OTEPMHYECKOH [OPH3OH-
TanbHOH Tpybe. Euie pa3 noxasaHo, YTO OCHOBHON napameTp, ONMCHIBAIOIMH POCT 00BEMHOR TeM-
TepaTyphl B YCNOBHAX NPEOONaNaHAS CHJ BBITAJKMBAHHS, ONPEJENsETCs KOPHEM YETBEPTOW CTeNcHH
w3 orHoweHus uncesn Penes u [perua. lNpennaraemelit MeTon 0606IMAET HMEIOLUMECA NAHHDBIE C TO4-
HOCTBLIO RO 8°, Ans oAbl B 15°) AN ITHAOBOTO CHHPTA M pacTBOPA TIIHIEPHHA 8 BOJE B COOTHO-
wenny 80/20. HecMOTps Ha TO, YTO HCHONb3OBANKCH JAHHBIE UM KHIKOCTH ¢ OOJBUIMM 4HCIIOM
[panaras, npeUraraeMblit METOX XOPOILO ONUCHIBAET U UMEIOLIMECA JAHHBIC LIS BO3IYXaA.



